
BIG-ALIGN: Fast Bipartite Graph Alignment

Danai Koutra*
Carnegie Mellon University

danai@cs.cmu.edu

Hanghang Tong
City College of New York

tong@cs.ccny.cuny.edu

David Lubensky
IBM T.J. Watson

davidlu@us.ibm.com

Abstract—How can we find the virtual twin (i.e., the same or
similar user) on LinkedIn for a user on Facebook? How can we
effectively link an information network with a social network to
support cross-network search? Graph alignment – the task of
finding the node correspondences between two given graphs – is
a fundamental building block in numerous application domains,
such as social networks analysis, bioinformatics, chemistry, pat-
tern recognition.

In this work, we focus on aligning bipartite graphs, a problem
which has been largely ignored by the extensive existing work on
graph matching, despite the ubiquity of those graphs (e.g., users-
groups network). We introduce a new optimization formulation
and propose an effective and fast algorithm to solve it. We also
propose a fast generalization of our approach to align unipartite
graphs. The extensive experimental evaluations show that our
method outperforms the state-of-art graph matching algorithms
in both alignment accuracy and running time, being up to 10×
more accurate or 174× faster on real graphs.

I. INTRODUCTION

Can we spot the same people in two different social
networks, say LinkedIn and Facebook? An equally interesting
question is how to find similar people across different graphs.
In both settings, a key step is to align1 the two graphs in order
to reveal similarities between the nodes of the two networks.

Informally, the problem is defined as follows: given two
graphs, GA(NA, EA) and GB(NB , EB) where N and E are
the node and edge sets respectively, how can we permute
their nodes, so that the graphs have as similar structure as
possible? This is a core building block in many desciplines as it
essentially enables us to link the different networks so that we
can search and/or transfer valuable knowledge across different
networks. The notions of graph similarity and alignment appear
in many disciplines such as protein-protein alignment [3] [7],
chemical compound comparison [23], information extraction
for finding synonyms in a single language or translation
between different languages [3], answering similarity queries
in databases [17], and pattern recognition [9] [29].

Among others, bipartite graphs stand for an important class
of real graphs and appear in many different settings, such as
author-conference publishing graphs, user-group membership
graphs, user-movie rating graphs. Despite their ubiquity, most,
if not all, of the existing work on graph alignment is tailored
for unipartite graphs and, thus, might be sub-optimal for
bipartite graphs.

In this paper, we mainly focus on the alignment of such
bipartite graphs. Our main contributions are:

* Work done during an internship at IBM T.J. Watson.
1Throughout this work we use the words “align(ment)” and “match(ing)”

interchangeably.

1) Formulations. We introduce a powerful primitive with
new constraints for the graph matching problem.

2) Algorithms. We propose an effective and fast procedure,
BIG-ALIGN, to solve the constrained optimization prob-
lem with careful handling of many subtleties. Then, we
further generalize it for matching unipartite graphs (UNI-
ALIGN).

3) Evaluations. We conduct extensive experiments, which
demonstrate that our algorithms, BIG-ALIGN and UNI-
ALIGN, are superior to existing graph matching methods
in terms of both accuracy and and efficiency.

The rest of the paper is organized as follows: Section II
presents the formal definition of the graph matching problem
we are addressing; Section III our proposed method; and
Section V the experimental results. Finally, we give the related
work, discussion, and conclusions in Sections VI, VII and VIII
respectively.

II. PROPOSED PROBLEM FORMULATION

In the past three decades, numerous communities studied
the problem of graph alignment, as it arises in many settings.
However, most of the research work has focused on unipartite
graphs, i.e. graphs that consist of only one type of nodes.
Formally, the problem addressed in the past is the following:
Given two unipartite graphs, GA and GB , with adjacency ma-
trices A and B, find the permutation matrix P that minimizes
the cost function funi:

min
P

funi(P) = min
P
||PAPT −B||2F ,

where || • ||F is the Frobenius norm of the corresponding
matrix. We list the frequently used symbols in Table I. The
permutation matrix P is a square binary matrix with exactly
one entry 1 in each row and column, and 0s elsewhere.
Effectively, it reorders the rows of the adjacency matrix A,
while its transpose reorders the columns of the matrix, so that
the resulting reordered matrix is “close” to B.

In this work, we introduce the problem of aligning bipartite
graphs, i.e., graphs whose edges connect two disjoint sets of
vertices (there are no edges within the two node sets). One
example of such graphs is the user-group graph; the first set
of nodes consists of users, the second set of groups, and the
edges represent user memberships. Throughout the paper we
will consider the alignment of the “user-group” LinkedIn graph
(A) with the “user-group” Facebook graph (B). In a more
general setting, the reader may think of the first set consisting
of nodes and the second set of communities.

First, we extend the traditional unipartite graph alignment
problem definition to bipartite graphs:
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TABLE I: Description of major symbols.

Notation Description
A,B adjacency matrix of bipartite graph GA, GB

AT ,BT transpose of matrix A, B
NA, NB set of nodes of A, B
EA, EB set of edges of A, B
nA1, nA2 number of nodes of graph A in set 1 and 2 resp.
nB1, nB2 number of nodes of graph B in set 1 and 2 resp.
P user-level (node-level) correspondence matrix
Q group-level (community-level) correspondence matrix

P(v) row or column vector of matrix P
1 vector of 1s

||A||F =
√

Tr(ATA), Frobenius norm of A
λ, μ sparsity penalty parameters for P, Q resp. (equiv. to lasso)
ηP , ηQ step of gradient descent for P, Q
ε small constant (> 0) for the convergence of grad. descent

Problem 1 (Adaptation of Traditional Definition): Given
two bipartite graphs, GA and GB , with adjacency matrices
A and B, find the permutation matrices P and Q that
minimize the cost function f0:

min
P,Q

f0(P,Q) = min
P,Q

||PAQ−B||2F ,

where || • ||F is the Frobenius norm of the matrix.

We note that in this case there are two different permutation
matrices that reorder the rows and columns of A “indepen-
dently”. However, this formulation has two main shortcomings:
[S1] It is hard to solve, due to its combinatorial nature.
[S2] The permutation matrices imply that we are in search
for hard assignments between the nodes of the input graphs.
However, finding hard assignments might not be possible nor
realistic. For instance, in the case of input graphs with perfect
‘star’ structure, aligning their spokes (peripheral nodes) is im-
possible, as they are identical from the structural viewpoint. In
other words, any way of aligning the spokes is equiprobable. In
such and more complicated and realistic cases, soft assignment
may be more valuable than hard assignment.

To deal with these issues, we relax Problem 1 that is di-
rectly adapted from the well-studied case of unipartite graphs,
and state it in a more realistic way:

Problem 2 (Soft, Sparse Bipartite Graph Alignment):
Given two bipartite graphs, GA and GB , with adjacency
matrices A and B, find the correspondence matrices P, Q
that minimize the cost function f :

min
P,Q

f(P,Q) = min
P,Q

||PAQ−B||2F
under the following constraints:

(1) [Probabilistic] each matrix element is a probability, i.e.
0 ≤ Pij ≤ 1 and 0 ≤ Qij ≤ 1, and

(2) [Sparsity] the matrices are sparse, i.e. ||P(v)||0 ≤ t and
||Q(v)||0 ≤ t for some small, positive constant t. The
||• ||0 denotes the l0-norm of the enclosed vector, i.e., the
number of its non-zero elements.

The first constraint, the requirement of non-integer entries
for the matrices, has two advantages:
[A1] It solves both shortcomings of the traditional-based
problem. The optimization problem is easier to solve, and
has a realistic, probabilistic interpretation; it does not provide
only the 1-to-1 correspondences, but also reveals similarities

between nodes across networks. The entries of the correspon-
dence matrix P (or Q) describe the probability that a LinkedIn
user (or group) corresponds to a Facebook user (or group).
We note that these properties are not guaranteed when the
correspondence matrix is required to be permutation or even
doubly stochastic (square matrix with non-negative real entries,
where each row and column sums to 1), which is common
practice in the literature.
[A2] The matrices P and Q do not have to be square, which
means that the matrices A and B can be of different size.
This is yet another realistic requirement, as very rarely do
two networks have the same number of nodes. Therefore,
our formulation addresses not only graph alignment, but also
subgraph alignment.

The second constraint follows naturally from the first one,
as well as the large size of the social, and other networks. We
want the correspondence matrices to be as sparse as possible,
so that they encode few potential correspondences per node.
Allowing every user/group of LinkedIn to be matched to every
user/group of Facebook is not realistic and, actually, it is
problematic for large graphs, as it has quadratic space cost
w.r.t. the size of the input graphs.

To sum up, the existing approaches do not distinguish the
nodes by types (e.g. users and groups), treat the graphs as
unipartite, and, thus, aim at finding a permutation matrix P,
which gives a hard assignment between the nodes of the input
graphs. In contrast, our formulation separates the nodes in cat-
egories, and can find correspondences at different granularities
at once (e.g., individual and group-level correspondence in the
case of the “user-group” graph).

III. BIG-ALIGN FOR BIPARTITE GRAPHS

Now that we have formulated the problem, we move on to
the description of a technique to solve it. The design objective
is two-fold. In terms of effectiveness, given the non-convexity
of Problem 2, our goal is to find a ‘good’ local minimum. In
terms of efficiency, we focus on carefully designing the search
procedure.

Our method, BIG-ALIGN, comprises two main ideas:
[Idea 1] an alternating, projected gradient descent approach
to find the local minima of the newly-defined optimization
problem (Problem 2), and
[Idea 2] a series of optimizations: (a) a network-inspired
initialization (NET-INIT) of the correspondence matrices to
find a good starting point, (b) automatic choice of the steps
for the gradient descent, and (c) handling the node-multiplicity
problem, i.e. the “problem” of having nodes with exactly the
same structure (e.g. peripheral nodes of a star) to improve both
effectiveness and efficiency.

Next, we start by building the core of our method, continue
with the description of the three optimizations, and conclude
with the pseudocode of the overall algorithm.

A. Alternating Projected Gradient Descent (APGD): Mathe-
matical formulation

Following the standard approach in the literature, in order
to solve the optimization problem (Problem 2), we first relax
the sparsity constraint, which is mathematically represented
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by the l0-norm of the matrices’ columns, and replace it with

the l1-norm,
∑

i |P(v)
i | = ∑

i P
(v)
i , where we also use the

probabilistic constraint. Therefore, the sparsity constraint now
takes the form:

∑
i,j Pij ≤ t and

∑
i,j Qij ≤ t. By using

this relaxation and applying Linear Algebra operations, the
bipartite graph alignment problem takes the following form.

Theorem 1: [Augmented Cost Function] The optimiza-
tion problem for the alignment of the bipartite graphs GA and
GB , with adjacency matrices A and B, under the probabilistic
and sparsity constraints (Problem 2), is equivalent to:

min
P,Q

faug(P,Q) = min
P,Q

{||PAQ−B||2F + λ
∑
i,j

Pij + μ
∑
i,j

Qij}

= min
P,Q

{Tr(PAQ(PAQ)T − 2PAQBT ) + λ1TP1+ μ1TQ1}, (1)

where ||• ||F is the Frobenius norm of the enclosed matrix, P
and Q are the user- and group-level correspondence matrices,
and λ and μ are the sparsity penalties of P and Q respectively.

Proof: See Lemma 1 in Appendix A.

In summary, we solve the minimization problem by using
a variant of the gradient descent algorithm. Given that the cost
function in eq. (1) is bivariate, we use an alternating procedure
to minimize it. We fix Q and minimize faug w.r.t. P, and
vice versa. If during the two alternating minimization steps,
the entries of the correspondence matrices become invalid
temporarily, we use a projection technique to guarantee the
probabilistic constraint: If Pij < 0 or Qij < 0, we project
the entry to 0. If Pij > 1 or Qij > 1, we project it to 1.
The update steps of the alternating, projected gradient descent
approach (APGD) are given by the following theorem.

Theorem 2: [Update Step] The update steps for the user-
(P) and group-level (Q) correspondence matrices of APGD
are given by:
P(k+1) = P(k) − ηP ·

(
2(P(k)AQ(k) −B)QT (k)

AT + λ11T
)

Q(k+1) = Q(k) − ηQ ·
(
2ATPT (k+1)

(P(k+1)AQ(k) −B) + μ11T
)
,

where P(k), Q(k) are the correspondence matrices at iteration
k, ηP and ηQ are the steps of the two phases of the APGD
and 1 is the all-1 column-vector.

Proof: See Lemmas 2-3, and Obs. 3 in Appendix A.

We note that the assumption in the above formulas is that A
and B are rectangular, adjacency matrices of bipartite graphs.
It turns out that this formulation has a nice connection to
the standard formulation for unipartite graph matching if we
treat the input bipartite graphs as unipartite (i.e., symmetric,
square, adjacency matrix). We summarize this equivalence in
the following proposition.

Proposition 1: [Equivalence to Unipartite Graph Align-
ment] If the rectangular adjacency matrices of the bipartite
graphs are converted to square matrices, then the minimization
is done w.r.t. the coupled matrix P∗:

P∗ =
(

P 0
0 Q

)
.

That is, Problem 2 becomes minP∗||P∗AP∗T −B||2F , which
is equivalent to the unipartite graph problem introduced at the
beginning of Section II.

B. Optimizations

Up to this point, we have the mathematical foundation at
our disposal to build our algorithm, BIG-ALIGN. But first we
have to make three design decisions:
(D1) How to initialize the correspondence matrices?
(D2) How to choose the steps for the APGD?
(D3) How to handle the structurally equivalent nodes?

The baseline approach, which we will refer to as BIG-
ALIGN-BASIC, consists of the simplest answers to these
questions: (D1) uniform initialization of the correspondence
matrices, (D2) “small”, constant step for the gradient descent,
(D3) no specific manipulation of the structurally equivalent
nodes. Next, we elaborate on sophisticated choices for the
initialization and optimization step that render our algorithm
more efficient. We also introduce the “node-multiplicity”
problem, i.e., the problem of structurally equivalent nodes,
and propose a way to deal with it.

(D1) How to initialize the correspondence matrices?

The optimization problem is non-convex (not even bi-
convex), and the gradient descent gets stuck in local minima,
depending heavily on the initialization. There are several
different ways of initializing the correspondence matrices P
and Q, such as random, degree-based, eigenvalue-based [24]
[10]. While each of these initializations has its own rationality,
they are designed for unipartite graphs and hence ignore the
skewness of the real, large-scale bipartite graphs. To address
this issue, we propose a network-inspired approach (NET-
INIT), which is based on the following observation about large-
scale, real biparite graphs:

Observation 1: Large, real networks have skewed or
power-law-like degree distribution ([1], [8], [11]). Specifically
in bipartite graphs, usually one of the node sets is significantly
smaller than the other, and has skewed degree distribution.

The implicit assumption2 of NET-INIT is that a person is
almost equally popular in different social networks, or, more
generally, an entity has similar “behavior” across the input
graphs. In our work, we found that such behavior can be
well captured by the node degree. However, the technique we
describe below can be naturally applied to other features (e.g.,
weight, ranking, clustering coefficient) that may capture better
the node behavior.

Our initialization approach consists of four steps. For
the description of the approach, we refer to the example of
LinkedIn and Facebook bipartite graphs, where the first set
consists of users, and the second set of groups. Assume that
the set of groups is significantly smaller than the set of users.
The steps, which are pictorially shown in Fig. 1(b), are:

Step 1. Match 1-by-1 the top-k high-degree groups in the
LinkedIn and Facebook graphs. To find k, we borrow the idea
of scree plot, which is used in Principal Component Analysis
(PCA): we sort the unique degrees of each graph in descending
order, and create the plot of unique degree vs. rank of node
(Fig. 1(a)). In this plot, we detect the “knee” and up to the

2If the assumption does not hold, no method is guaranteed to find the
alignment based purely on the structure of the graphs, but they can still reveal
similarities between nodes.

391



(a) “Scree-like” plot for
NET-INIT.

(b) Pictorial initialization of P.

Fig. 1: (a) Choise of k in Step 1 of NET-INIT. (b) Initialization of
the node/user-level correspondence matrix by NET-INIT.

corresponding degree we “safely” match the groups of the two
graphs one-by-one, i.e. the most popular group of LinkedIn is
aligned initially with the most popular group of Facebook etc.
For the automatic detection of the knee, we consider the plot
piecewise, and assume that the knee occurs when the slope of
a line segment is less than 5% of the slope of the previous
segment.

Step 2. For each of the matched groups, align their neighbors
based on their Relative Degree Difference (RDD):

Definition 1 (RDD): The Relative Degree Distance func-
tion that aligns node i of graph A to node j of B is:

rdd(i, j) =

(
1 +

|deg(i)− deg(j)|
(deg(i) + deg(j))/2

)−1

(2)

where deg(•) is the degree of the corresponding node.

The idea behind this approach is that a node in one graph
corresponds most probably to a node with similar degree in
another graph, than to a node with very different degree. The
above function assigns higher probabilities to alignments of
similar nodes, and lower probabilities to alignments of very
dissimilar nodes w.r.t. their degrees.

We note that the RDD function, rdd(i, j), corresponds to the
degree-based similarity between node i and node j. However, it
can be generalized to other properties (than the degree) that the
nodes are expected to share across different graphs. Equation
(2) captures one additional desired property: it penalizes the
alignments based on the relative difference of the degrees. For
example, two nodes of degrees 1 and 20 respectively are less
similar than two nodes with degrees 1001 and 1020.

Step 3. Create cg clusters of the remaining groups in both
networks, based on their degrees. Align the clusters 1-by-1
according to the degrees (e.g., “high”, “low”), and initialize the
correspondences within the matched clusters using the RDD.

Step 4. Create cu clusters of the remaining users in both
networks, based on their degrees. Align the users using the
RDD approach within the corresponding user clusters.

(D2) How to choose the steps for the APGD?

One of the most important parameters that come up in the
APGD method is η (the step of approaching the minimum
point), which determines its convergence rate. In an attempt
to automatically determine the step, we use the line search
approach [6], which is described in Algorithm 2. Line search is

a strategy that finds the local optimum for the step. Specifically,
in the first phase of APGD, line search determines ηP by
treating the objective function, faug , as a function of ηP
(instead of a function of P or Q) and loosely minimizing
it. In the second phase of APGD, ηQ is determined similarly.
Next we introduce 3 variants of our method that differ in the
way the steps are computed.

Variant 1: BIG-ALIGN-Points. Our first approach con-
sists of approximately minimizing the augmented cost func-
tion: we randomly pick some values for ηP within some
“reasonable” range, and compute the value of the cost function.
We choose the step ηP that corresponds to the minimum value
of the cost function. Similarly we define ηQ. This approach is
computationally expensive, as we shall see in Sec. V.

Variant 2: BIG-ALIGN-Exact. By carefully handling the
objective function of our optimization problem, we can find
closed (exact) forms for ηP and ηQ, which are given in the
next theorem.

Theorem 3: [Optimal Step Size for P] In the first phase
of APGD, the value of the step ηP that exactly minimizes the
augmented function, faug(ηP ), is given by:

ηP =
2Tr {(P(k)AQ)(ΔPAQ)T − (ΔPAQ)BT }+ λ

∑
i,j ΔPij

2||ΔPAQ||2F
, (3)

where P(k+1) = P(k) − ηPΔP, ΔP = ∇Pfaug|P=P(k) and
Q = Q(k).

Proof: See Appendix B.

Similarly, we find the appropriate value for the step ηQ of
the second phase of APGD.

Theorem 4: [Optimal Step Size for Q] In the second
phase of APGD, the value of the step ηQ that exactly min-
imizes the augmented function, faug(ηQ), is given by:

ηQ =
2Tr {(PAQ(k))(PAΔQ)T − (PAΔQ)BT }+ μ

∑
i,j ΔQij

2||PAΔQ||2F
, (4)

where ΔQ = ∇Qfaug|Q=Q(k) , P = P(k), and Q(k+1) =

Q(k) − ηQΔQ.

Proof: Omitted for brevity.

BIG-ALIGN-Exact is significantly faster than BIG-ALIGN-
Points. It turns out that we can increase the efficiency even
more, as experimentation with real data revealed that the
values of the gradient descent steps that minimize the objective
function do not change drastically in every iteration (Fig. 2).
This led to the third variation of our algorithm:

Variant 3: BIG-ALIGN-Skip. This variation does exact
line search for the first few (e.g., 100) iterations, and then
updates the values of the steps every few (e.g., 500) iterations.
This significantly reduces the computations for determining
the optimal step sizes.

(D3) How to handle the structurally equivalent nodes?

One last observation that renders BIG-ALIGN more effi-
cient is the following:

Observation 2: In the majority of graphs, there is a signif-
icant number of nodes that cannot be distinguished, because
they have exactly the same structural features.
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(a) Bipartite graph with 50 nodes. (b) Bipartite graph with 300 nodes. (c) Bipartite graph with 900 nodes.

Fig. 2: (Hint for speedup.) Size of optimal step for P (blue) and Q (green) vs. the number of iterations. We observe that the optimal step
sizes do not change dramatically in consecutive iterations, and, thus, skipping some computations almost does not affect the accuracy at all.

For instance, in many real-world networks, a commonplace
structure is stars [14], but it is impossible to tell the peripheral
nodes apart. Other examples of non-distinguishable nodes
include the members of cliques, full bipartite cores etc.

To address this problem, we introduce a pre-processing
phase at which we eliminate nodes with identical structures
by aggregating them in super-nodes. For example, a star with
100 peripheral nodes which are connected to the center by
edges of weight 1, will be replaced by a super-node connected
to the central node of the star by an edge of weight 100. This
subtle step not only leads to a better optimization solution, but
also improves the efficiency by reducing the scale of graphs
that are actually fed into our BIG-ALIGN.

C. BIG-ALIGN: Putting everything together

The previous subsections shape up the proposed algorithm,
BIG-ALIGN, the pseudocode of which is given in Algorithms 1
and 2.

In our implementation, the only parameter that the user is
required to input is the sparsity penalty, λ. The bigger this
parameter is, the more entries of the matrices are forced to be

0. We set the other sparsity penalty μ = λ∗(elements in Q)
elements in P , so

that the penalty per non-zero element of P and Q is the same.

It is worth mentioning that, in contrast to the approaches
found in the literature, our method does not use the classic
Hungarian algorithm to find the hard correspondences between
the nodes of the bipartite graphs. Instead, we rely on a fast
approximation: we align each row i (node/user) of PT with
the column j (node/user) that has the maximum probability. It
is clear that this assignment is very fast, and even paralleliz-
able, as each node alignment can be processed independently.
Moreover, it allows aligning multiple nodes of one graph with
the same node of the other graph, a property that is desirable
especially in the case of structurally equivalent nodes.

Figure 3 depicts how the cost and accuracy of the alignment
change with respect to the number of iterations of the gradient
descent algorithm.

IV. UNI-ALIGN: EXTENSION TO UNIPARTITE GRAPHS

Although our primary target for BIG-ALIGN is bipartite
graphs – which by themselves already stand for a significant

Algorithm 1 BIG-ALIGN-Exact: Bipartite Graph Alignment

INPUT: A, B, λ, MAXITER
ε = 10−6; cost(0) = 0; k = 1;
/* STEP 1: pre-processing for node-multiplicity */
aggregating identical nodes
/* STEP 2: initialization */
[P0, Q0] = NET-INIT-ialization
cost(1) = faug(P0,Q0)
/* STEP 3: alternating projected gradient descent (APGD)
*/
while |cost(k − 1)− cost(k)|/cost(k − 1) > ε AND k <
MAXITER do

k ++
/* PHASE 1: fixed Q, minimization w.r.t. P */
ηPk = LINESEARCH_P(P(k),Q(k),∇Pfaug|P=P(k))
P(k+1) = P(k) − ηPk∇Pfaug(P

(k),Q(k))
VALIDPROJECTION(P(k+1))
/* PHASE 2: fixed P, minimization w.r.t. Q */
ηQk = LINESEARCH_Q(P(k+1),Q(k),∇Qfaug|Q=Q(k))

Q(k+1) = Q(k) − ηQk∇Qfaug(P
(k+1),Q(k))

VALIDPROJECTION(Q(k+1))
cost(k) = faug(P,Q)

end while
return P(k+1), Q(k+1)

/* PROJECTION STEP */
function VALIDPROJECTION(P)

for all i, j
if Pij < 0 then Pij = 0
else if Pij > 1 then Pij = 1

end function

portion of real graphs –, as a side-product, BIG-ALIGN also
offers an alternative, fast solution to the alignment problem of
unipartite graphs. Our approach consists of two steps:

Step 1: Uni- to Bi-partite Graph Conversion. The first step
involves converting the n × n unipartite graphs to bipartite
graphs. Specifically, we can first extract d node features, such
as degree, edges in a node’s egonet (= induced subgraph of the
node and its neighbors), and clustering coefficient. Then, we
can form the n×d bipartite graph node-to-feature, where n�
d. The runtime of this step depends on the time complexity of
extracting the selected features.

393



Algorithm 2 Line Search for ηP and ηQ

function LINESEARCH P(P,Q,ΔP)
return

ηP =
2Tr {(P(k)AQ)(ΔPAQ)T − (ΔPAQ)BT }+ λ

∑
i,j ΔPij

2||ΔPAQ||2F
end function

function LINESEARCH Q(P,Q,ΔQ)
return

ηQ =
2Tr {(PAQ(k))(PAΔQ)T − (PAΔQ)BT }+ μ

∑
i,j ΔQij

2||PAΔQ||2F
end function

(a) Cost function. (b) Accuracy.

Fig. 3: BIG-ALIGN (900 nodes, λ = 0.1): As desired, the cost of
the objective function drops with the number of iterations, and at
the same time the accuracy both on node- (green) and community-
level (red) increases. The blue line corresponds to the total accuracy,
i.e., the accuracy of all the alignments independently of the node type
(user or group). The exact definition of accuracy is given in Sec. V-B.

Step 2: Finding P. We note that in this case, the alignment
of the second sets of the bipartite graphs is known, i.e., Q is
an identity matrix, since we extract the same type of features
from the graphs. Thus, we only need to align the nodes that
belong to the first sets of the graphs, i.e., compute P. We
revisit Eq. (1) of our initial minimization problem, and now
we want to minimize it only w.r.t. P. By setting the derivative
of faug w.r.t. P equal to 0, we have:

P · (AAT) = BAT − λ/2 · 11T,

where A is a n × d matrix. If we do SVD (Singular Value
Decomposition) on this matrix, i.e., A = USV, the Moore-
Penrose pseudo-inverse of AAT is (AAT)† = US−2UT.
Therefore, we have

P = (BAT − λ/211T)(AAT)†

= (BAT − λ/211T)(US−2UT)

= B · (ATUS−2UT)− 1 · (λ/2 · 1TUS−2UT)

= B ·X− 1 ·Y (5)

where X = ATUS−2UT and Y = λ/2 · 1TUS−2UT.

Hence, we can exactly (non-iteratively) find P from
Eq. (5). It can be shown that the time complexity for finding P
is O(nd2) (after omitting the simpler terms), which is linear
on the number of nodes of the input graphs.

What is more, we can see from Eq. (5) that P itself has
the low-rank structure. In other words, we do not need to store

TABLE II: Graph Alignment Algorithms: name conventions, short
description, type of graphs for which they were designed (‘uni-’ for
unipartite, ‘bi-’ for bipartite graphs), and reference.

Name Description Graph Source
Umeyama eigenvalue-based uni- [24]

NMF-based NMF-based uni- [10]

NetAlign-full BP-based with uniform init. uni- Modified

NetAlign-deg BP-based with same-degree init. uni- from [3]

BIG-ALIGN-Basic APGD (no optimizations) bi- current

BIG-ALIGN-Points APGD + approx. Line Search bi- current

BIG-ALIGN-Exact APGD + exact Line Search bi- current

BIG-ALIGN-Skip APGD + skip some Line Search bi- current

UNI-ALIGN BIG-ALIGN-inspired (SVD) uni- current

P in the form of n× n. Instead, we can represent (compress)
P as the multiplication of two low-rank matrices X and Y,
whose additional space cost is just O(nd+ n) = O(nd).

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed algorithms, BIG-
ALIGN and UNI-ALIGN, w.r.t. alignment accuracy and run-
time, and also compare them to the state-of-the-art methods.
The code for all the methods is written in Matlab and the
experiments were run on Intel(R) Xeon(R) CPU 5160 @
3.00GHz, with 16GB RAM memory.

A. Baseline Methods

To the best of our knowledge, no graph matching algorithm
has been designed for bipartite graphs. Throughout this section,
we compare our algorithms to 3 state-of-the-art approaches,
which are succinctly described in Table II: (i) Umeyama,
the influential eigenvalue decomposition-based approach pro-
posed by Umeyama [24]; (ii) NMF-based, a recent approach
based on Non-negative Matrix Factorization [10]; and (iii)
NetAlign-full and NetAlign-deg, two variations of
a fast, and scalable Belief Propagation-based (BP) approach
[3]. Some details about these approaches are provided in the
Related Work (Section VI).

In order to use the state-of-the-art approaches for aligning
bipartite graphs, we convert the latter to unipartite by using
Proposition 1. In addition to that, the BP-based approach
requires not only the two input graphs, but also a bipartite
graph that encodes the possible matchings per node. To render
the method applicable in our setting, we use two heuristics
for forming the required bipartite ‘matching’ graph: (a) full
bipartite graph, which essentially conveys that we have no
domain information about the possible alignments, and each
node of the first graph can be aligned with any node of
the second graph (NetAlign-full); and (b) degree-based
bipartite graph, where only nodes with the same degree in both
graphs are considered possible matchings (NetAlign-deg).

B. Evaluation of BIG-ALIGN

For the experiments on bipartite graphs, we use the movie-
genre graph of the MovieLens network3. Each of the 1,027
movies is linked to at least one of the 23 genres (e.g., comedy,
romance, drama). Specifically, from this network, we extract

3http://www.movielens.org
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(a) (Higher is better.) Accuracy of align-
ment vs. number of nodes.

(b) (Higher and left is better.) Accuracy of alignment
vs. runtime (in seconds / logscale) for graphs with 300
nodes (small markers), and 700 nodes (big markers).

(c) (Lower is better.) Runtime in seconds vs. the
number of edges in the graphs in log-log scale.

Fig. 5: Accuracy and runtime of alignment of bipartite graphs. (a) BIG-ALIGN-Exact and BIG-ALIGN-Skip (red lines) significantly outperform,
in terms of accuracy, all the alignment methods for almost all the graph sizes; (b) BIG-ALIGN-Exact and BIG-ALIGN-Skip (red squares/ovals)
are more accurate and, at the same time, faster than the baselines for both graph sizes. (c) The BIG-ALIGN variants are faster than all the
baseline approaches, except for Umeyama’s algorithm.

(a) Graphs of 50 nodes. (b) Graphs of 900 nodes.

Fig. 4: (Higher is better.) Accuracy of bipartite graph alignment
vs. level of noise (0-20%). BIG-ALIGN-Exact (red line with square
marker), almost always, outperforms the baseline methods.

subgraphs of different sizes. Then, following the tradition in
the literature [10], for each of the subgraphs we generate
permutations, B, with noise from 0% to 20% using the
formula Bij = (PAQ)ij · (1 + noise ∗ rij), where rij is a
random number in [0, 1]. For each noise level and graph size,
we generate 10 distinct permutations of the initial subnetwork.
We run the alignment algorithms on all the pairs of the original
and permuted subgraphs, and report the mean accuracy and
runtime. For all the variants of BIG-ALIGN, we set the sparsity
penalty λ = 0.1.

How do we compute the accuracy of the methods? For
the state-of-the-art methods, which find “hard” alignments
between the nodes, the accuracy is computed as usual: only if
the true correspondence is found, the corresponding matching
is deemed correct. In other words, we use the state-of-the-art
algorithms off-the-shelf. For our method, BIG-ALIGN, which
has the advantage of finding “soft”, probabilistic alignments,
we consider two cases for evaluating its accuracy: (i) Correct
Alignment. If the true correspondence coincides with the most
probable matching, we count the node alignment as correct;
(ii) Partially Correct Alignment. If the true correspondence
is among the most probable matchings (tie), the alignment
thereof is deemed partially correct and weighted by (# of nodes
in tie)/ (total # of nodes).

Accuracy. Figures 4 (a) and (b) present the accuracy of
the methods for two different graph sizes and varying level
of noise in the permutations. We observe that BIG-ALIGN

outperforms all the other methods in most cases with a large
margin. In Fig. 4(b), the only exception is the case of 20%
of noise in the 900-nodes graphs where NetAlign-deg and
NetAlign-full perform slightly better than our algorithm,
BIG-ALIGN-Exact. The results for other graph sizes are along
the same lines, and therefore are omitted for space.

Figure 5(a) depicts the accuracy of the alignment methods
for varying graph size. For graphs with different sizes, the
variants of our method achieve significantly higher accuracy
(70%-98%) than the baselines (10%-58%). Moreover, surpris-
ingly, BIG-ALIGN-Skip performs slightly better than BIG-
ALIGN-Exact, although the former skips several updates of the
gradient descent steps. The only exception is for the small-
est graph size, where the consecutive optimal steps change
significantly (Fig. 2(a)), and, thus, skipping computations
affects the performance. NetAlign-full and Umeyama’s
algorithm are the least accurate methods, while NMF-based
and NetAlign-deg achieve medium accuracy. Finally, the
accuracy vs. runtime plot in Fig. 5(b) shows that our algorithms
have two desired properties: they achieve better performance,
faster than the baseline approaches.

Runtime. Figure 5(c) presents the runtime as a function of
the number of edges in the graphs. Umeyama’s algorithm and
NetAlign-deg are the fastest methods, but at the cost of
accuracy; BIG-ALIGN is upto 10× more accurate in the cases
that it performs slower. The third best method is BIG-ALIGN-
Skip, closely followed by BIG-ALIGN-Exact. BIG-ALIGN-
Skip is upto 174× faster than the NMF-based approach,
and upto 19× faster than NetAlign-full. However, our
simplest algorithm that uses line search, BIG-ALIGN-Points,
is the slowest approach that takes considerable amount of time
for graphs with more than 1.5K edges (and, thus, we omit
several data points in the plot).

It is worth mentioning that currently BIG-ALIGN is a
single machine implementation, but it has the potential for
further speed-up. For example, it could be parallelized by
splitting the optimization problem to smaller subproblems
(by decomposing the matrices, and doing simple column-
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TABLE III: Runtime (top) and accuracy (bottom) comparison of the
BIG-ALIGN variants: BIG-ALIGN-Basic, BIG-ALIGN-Points, BIG-
ALIGN-Exact, and BIG-ALIGN-Skip. BIG-ALIGN-Skip is not only
faster, but also comparably or more accurate than BIG-ALIGN-Exact.

BIG-ALIGN-Basic BIG-ALIGN-Points BIG-ALIGN-Exact BIG-ALIGN-Skip

Nodes mean std mean std mean std mean std

R U N T I M E (SEC)

50 0.07 0.00 17.3 0.05 0.24 0.08 0.56 0.01
100 0.023 0.00 1245.7 394.55 5.6 2.93 3.9 0.05
200 31.01 16.58 2982.1 224.81 25.5 0.39 10.1 0.10
300 0.032 0.00 5240.9 30.89 42.1 1.61 20.1 1.62
400 0.027 0.01 7034.5 167.08 45.8 2.058 21.3 0.83
500 0.023 0.01 - - 57.2 2.22 36.6 0.60
600 0.028 0.01 - - 64.5 2.67 40.8 1.26
700 0.029 0.01 - - 73.6 2.78 44.6 1.23
800 166.7 1.94 - - 86.9 3.63 49.9 1.06
900 211.9 5.30 - - 111.9 2.96 61.8 1.28

A C C U R A C Y

50 0.071 0.00 0.982 0.02 0.988 0 0.904 0.03
100 0.034 0.00 0.922 0.07 0.939 0.06 0.922 0.07
200 0.722 0.37 0.794 0.01 0.973 0.01 0.975 0.00
300 0.014 0.00 0.839 0.02 0.972 0.01 0.964 0.01
400 0.011 0.00 0.662 0.02 0.916 0.03 0.954 0.01
500 0.011 0.00 - - 0.66 0.20 0.697 0.24
600 0.005 0.00 - - 0.67 0.20 0.713 0.23
700 0.004 0.00 - - 0.69 0.20 0.728 0.19
800 0.013 0.00 - - 0.12 0.02 0.165 0.03
900 0.015 0.00 - - 0.17 0.20 0.195 0.22

row multiplications). Moreover, instead of the basic gradient
descent algorithm, we can use a variant method, the stochastic
gradient descent, which is based on sampling.

Variants of BIG-ALIGN. Before we continue with the
evaluation of UNI-ALIGN, we present in Table III the runtime
and accuracy of all the variants of BIG-ALIGN for aligning
movie-genre graphs with varying sizes and permutations with
noise level 10%. The parameters used in this experiment
are ε = 10−5, and λ = 0.1. For BIG-ALIGN-Basic, η is
constant and equal to 10−4, while the correspondence matrices
are initialized uniformly. This is not the best setting for all
the pairs of graphs that we are aligning, and it results in
very low accuracy. On the other hand, BIG-ALIGN-Skip is
not only ∼ 350× faster than BIG-ALIGN-Points, but also
more accurate. Moreover, it is ∼ 2× faster than BIG-ALIGN-
Exact with higher or equal accuracy. The speedup can be
further increased by skipping more updates of the gradient
descent steps. Overall, the results show that a naive solution
of the optimization problem, such as BIG-ALIGN-Basic, is not
sufficient, and the optimizations we propose in Section III are
crucial and render our algorithm efficient.

C. Evaluation of UNI-ALIGN

To evaluate our proposed method, UNI-ALIGN, for aligning
unipartite graphs, we use the Facebook who-links-to-whom
graph [25], which consists of approximately 64K nodes. In this
case, the baseline approaches are readily employed, while our
method requires the conversion of the given unipartite graph
to bipartite. We do so by extracting some unweighted egonet4

features for each node (degree of node, degree of egonet5,
edges of egonet, mean degree of the node’s neighbors). As
before, from the initial graph we extract subgraphs of size

4As a reminder, egonet of a node is the induced subgraph of its neighbors.
5The degree of an egonet is defined as the number of incoming and outgoing

edges of the subgraph, when viewed as a super-node.

(a) (Higher and left is better.) Accuracy of alignment vs. runtime
(in seconds / logscale) for facebook frienship subgraphs of size 200
(small markers), 400 (medium markers), and 800 (big markers).

(b) (Lower is better.) Runtime (in seconds) vs. number of edges
in log-log scale.

Fig. 6: Accuracy and runtime of alignment of unipartite graphs. (a)
UNI-ALIGN (red points) is more accurate and faster than all the
baselines for all graph sizes. (c) UNI-ALIGN (red squares) is faster
than all the baseline approaches, followed closely by Umeyama’s
approach (green circles).

100-800 nodes (or equivalently, 264-6K edges), and create 10
noisy permutations (per noise level) as before.

Accuracy. The accuracy vs. runtime plot in Fig. 6(a) shows
that UNI-ALIGN outperforms all the other methods in terms of
accuracy and runtime for all the graph sizes depicted. Although
NMF achieves a reasonably good accuracy for the graph of
200 nodes, it takes too long to terminate; we stopped the runs
for graphs of bigger sizes as the execution was taking too
long. The remaining approaches are fast enough, but yield poor
accuracy.

Runtime. Figure 6(b) compares the graph alignment algo-
rithms w.r.t. their running time (in logscale). UNI-ALIGN is the
fastest approach, closely followed by Umeyama’s algorithm.
NetAlign-deg is some orders of magnitude slower than the
previously mentioned methods. However, NetAlign-full
ran out of memory for graphs with more than 2.8K edges; we
stopped the runs of the NMF-based approach, as it was taking
too long to terminate even for small graphs with 300 nodes and
1.5K edges. The results are similar for other graph sizes that,
for simplicity, are not shown in the figure. For graphs with
200 nodes and ∼ 1.1K edges (which is the biggest graph for
which all the methods were able to terminate), UNI-ALIGN

is 1.75× faster than Umeyama’s approach; 2× faster than
NetAlign-deg; 2, 927× faster than NetAlign-full;
and 31, 709× faster than the NMF-based approach.
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VI. RELATED WORK

The graph alignment problem is of such great interest
that there are more than 150 publications proposing different
solutions for it, and spanning numerous research fields: from
data mining to security and re-identification [13] [18], bioin-
formatics [4] [15] [22] , databases [17], chemistry [23], vision,
and pattern recognition [9]. Among the suggested approaches
are genetic, spectral, clustering algorithms [20], decision trees,
expecation-maximization [16], graph edit distance [21], sim-
plex [2], non-linear optimization [12], iterative HITS-inspired
[5][28]. Notice that all these works are designed for unipartite
graphs, while we focus on bipartite graphs.

One of the well-known approaches is Umeyama’s near-
optimum solution for nearly-isomorphic graphs [24]. The
method solves the optimization problem minP||PAPT −B||
(where P is permutation matrix) based on the eigendecom-
position of the matrices, and operates on unipartite, weighted
graphs with the same number of nodes. The Hungarian al-
gorithm [19] is employed at the end to find the node corre-
spondences. The constraint that P is doubly stochastic matrix
is imposed in [26] and [29], where the proposed formulation,
PATH, is based on convex and concave relaxations. Ding et al
[10] recently proposed a Non-Negative Matrix Factorization
(NMF) approach, which starts from Umeyama’s solution, and
then applies an iterative algorithm to find the orthogonal matrix
P with the node correspondences.

Bradde et al. [7] propose distributed, heuristic, message-
passing algorithms, based on Belief Propagation [27], for
protein alignment and prediction of interacting proteins. In-
dependently, Bayati et al [3] formulate graph matching as an
integer quadratic problem, and also propose message pass-
ing algorithms for aligning sparse networks. A sparse and
weighted bipartite graph, whose edges represent the possible
node matchings between the two graphs is required by these
algorihms. The use of the full bipartite graph was proposed
earlier by Singh et al. [22].

In all these works, the graphs that are studied are unipartite,
while we focus on bipartite graphs, and also propose an
extension of our method to handle unipartite graphs.

VII. DISCUSSION

The experiments show that BIG-ALIGN solves efficiently a
problem that has been neglected in the literature: the alignment
of bipartite graphs.

Given that all the efforts have been targeted at aligning uni-
partite graphs, why matching bipartite graphs deserves being
studied separately? Firstly, bipartite networks are omnipresent:
people like webpages, belong to online communities, access
shared files in companies, post in blogs, co-author papers,
attend conferences etc. All these settings can be modeled
as bipartite graphs. Secondly, although it is possible to turn
them to unipartite and apply an off-the-shelf algorithm, as
shown in the experiments, knowledge of the specific structural
characteristics can prove useful in achieving better quality
alignments. Lastly, this problem enables emerging applica-
tions. For instance, one may be able to link the clustering
results from different networks by applying soft clustering on
the input graphs, and subsequently our method on the obtained
node-cluster membership graphs.

Although the main focus of our paper is bipartite graph
alignment, the latter inspires an alternative way of matching
unipartite graphs, by turning them to bipartite. Therefore, we
show how our framework can handle any type of input graphs,
without any restrictions on its structure.

Finally, is our approach simply gradient descent? The
answer is negative; gradient descend is the core of our algo-
rithm, but the projection technique, appropriate initialization
and choice of the gradient step, as well as careful handling
of known graph properties are the critical design choices that
make our algorithm successful (as shown in Sec. V, where we
compare our method to simple gradient descend, BIG-ALIGN-
Basic).

VIII. CONCLUSION

In this paper, we study the problem of graph matching
for an important class of real graphs, bipartite graphs. Our
contributions can be summarized as follows:

1) Formulations. We introduce a powerful primitive with
new constraints for the graph matching problem.

2) Algorithms. We propose an effective and efficient algo-
rithm, BIG-ALIGN, based on gradient descent (APGD) to
solve our constrained optimization problem with careful
handling of many subtleties. We also give a generalization
of our approach to align unipartite graphs (UNI-ALIGN).

3) Evaluations. Our extensive experiments show that BIG-
ALIGN and UNI-ALIGN are superior to state-of-the-art
graph matching algorithms in terms of both accuracy and
efficiency, for bipartite as well as unipartite graphs.

Future work includes extending our problem formulation
to subgraph matching by revisiting the initialization of the
correspondence matrices.
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APPENDIX A: DERIVATION OF THE APGD EQUATIONS

Here we give the lemmas and proofs that are used to derive
the updating steps of the APGD method.

Lemma 1: The minimization of f in Problem 2 can be re-
duced to the problem: minP,Q {||PAQ||2F − 2TrPAQBT }.

Proof: Starting from the definition of the Frobenius norm
of PAQ−B, we obtain:

||PAQ−B||2F = Tr (PAQ−B)(PAQ−B)T

= ||PAQ||2F − 2Tr (PAQBT ) + Tr (BBT ),

where we used the fact that Tr (PAQBT ) = Tr (PAQBT )T .
Notice that the last term, Tr (BBT ), does not depend on P or
Q, and does not affect the minimization.

Lemma 2: The derivative of the objective function, f(•),
w.r.t. P is given by:

∂f(P,Q)
∂P = 2(PAQ−B)QTAT .

Proof: By using properties of matrix derivatives, we
obtain:

∂(||PAQ||2F − 2Tr (PAQBT ))

∂P
=

=
∂Tr (PAQQTATPT )

∂P
− 2

∂Tr (PAQBT )

∂P

= 2(PAQ−B)QTAT

Lemma 3: The derivative of the cost function, f(•), w.r.t.
Q is given by:

∂f(P,Q)

∂Q
= 2ATPT (PAQ−B)

Proof: By using properties of matrix derivatives, and
the invariant property of the trace under cyclic permutations
Tr (PAQQTATP) = Tr (ATPTPAQQT ), we obtain:

∂(||PAQ||2F − 2TrPAQBT )

∂Q
=

=
∂Tr(ATPTPAQQT )

∂Q
− 2

∂Tr (PAQBT ))

∂Q
=

= 2ATPT (PAQ−B)

Observation 3: The partial derivative w.r.t. P of the spar-

sity penalty term of the cost function, faug , is
∂(1TP1)

∂P = 11T .

APPENDIX B: STEP CHOICE

To find the step ηP that minimizes faug(ηP ), we take its
derivative and set it to 0:

dfaug

dηP

=
d(Tr{P(k+1)AQ(P(k+1)AQ)T − 2P(k+1)AQBT } + λ

∑
i,j P

(k+1)
ij

)

dηP

= 0,

(6)

where P(k+1) = P(k)−ηPΔP , where ΔP = ∇Pfaug|P=P(k) .
It also holds that

Tr (P(k+1)AQ(P(k+1)AQ)T )− 2P(k+1)AQBT ) =

||P(k)AQ||2F − 2TrP(k)AQBT + η2P ||ΔPAQ||2F+

+2ηP Tr (ΔPAQBT )− 2ηP Tr (P(k)AQ)(ΔPAQ) (7)

Substituting Eq. (7) in (6), and solving for ηP yields the
‘best value’ in the line search point of view. The computations
are symmetric for ηQ, and, thus, omitted.
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